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Director,	Division	of	Engineering	Science,	Will	Cluett,	BSc.,	PhD		Room	2110,	Bahen	Centre	416-978-2903	engsci.chair@utoronto.ca	Undergraduate	Academic	Advisors	Stephen	Johns,	Academic	Advisor,	Years	1	&	2	Room	2110,	Bahen	Centre	416-946-7351	engsci12@utoronto.ca				Irma	Berardi,	Academic	Advisor	for	International	Students,	Years	1	&
2	Room	2110,	Bahen	Centre	416-978-6162	engsci12.intl@utoronto.ca		Brendan	Heath,	Academic	Advisor,	Years	3	&	4	Room	2110,	Bahen	Centre	416-946-7352	engsci34@utoronto.ca					Don	Newton,	Frontline	Student	Advisor	Room	2110,	Bahen	Centre	416-978-2903	askengsci@utoronto.ca	Engineering	Science	is	an	enriched	program	that	provides
excellent	preparation	for	postgraduate	studies	in	engineering	and	science	as	well	as	for	other	professional	degree	programs	such	as	business,	law	and	medicine.	Program	graduates	are	also	well	qualified	to	immediately	embark	on	professional	engineering-related	careers.	The	Engineering	Science	program	shares	elements	of	the	Faculty’s	engineering
programs,	but	the	program	is	distinct	in	many	respects.	Key	differences	include:	The	Engineering	Science	program	is	designed	and	delivered	at	a	level	that	is	more	academically	demanding.	The	Engineering	Science	program	contains	more	mathematics,	science	and	engineering	science,	with	a	greater	focus	on	deriving	results	using	a	first-principles
approach.	The	Engineering	Science	program	has	a	distinct	“2+2”	curriculum	structure,	namely	a	two-year	foundation	curriculum	followed	by	a	two-year	specialization	curriculum	in	a	diverse	range	of	fields,	many	of	which	are	unique	to	the	Engineering	Science	program.	The	Engineering	Science	program	requires	that	all	students	complete	an
independent	research-based	thesis	project.	Engineering	Science	students	in	years	one,	two,	and	three	are	required	to	maintain	a	full	course	load	unless	they	obtain	permission	from	their	academic	advisor	to	pursue	part-time	studies	or	less	than	a	full	course	load.	Students	entering	year	four	are	expected	to	maintain	a	full	course	load,	but	students
with	medical	or	personal	reasons	or	who	have	completed	program	requirements	prior	to	year	four	may	go	part-time	or	less	than	a	full	course	load	in	4F	and	/	or	4W.	This	is	subject	to	the	approval	of	the	student's	academic	advisor.	A	reduced	course	load	in	4F	or	4W	may	impact	award	assessments.	Please	refer	to	the	academic	calendar	under
"Academic	Regulations	VII:	Academic	Standing"	for	Honours	Standing	criteria	as	related	to	course	load	and	consult	your	academic	advisor	for	more	information.	Transfers	from	first-year	Engineering	Science	to	one	of	the	Faculty’s	Core	8	engineering	programs	are	permitted	early	in	the	Fall	Term	(typically	within	the	first	two	weeks	of	the	Fall	Term),
the	end	of	the	Fall	Term	and	the	end	of	the	Winter	Term.	Continuation	into	the	Winter	Term	of	year	one	requires	a	minimum	average	of	55%	in	the	Fall	Term;	continuation	into	year	two	requires	a	minimum	average	of	65%	in	the	Winter	Term	of	year	one.	Students	who	do	not	meet	these	requirements	are	required	to	transfer	into	one	of	the	Faculty’s
Core	8	programs,	subject	to	the	requirements	and	provisions	outlined	in	the	section	on	Academic	Regulations	in	this	Calendar.				Engineering	Science	Curriculum	The	first	two	years	of	the	curriculum	focus	on	the	foundations	of	both	engineering	and	science.	The	courses	in	the	first	two	years	of	the	program	are	common	for	all	students	and	are	only
offered	to	students	in	the	program.	At	the	end	of	second	year,	each	student	selects	one	of	the	following	majors	(represents	their	major	field	of	specialization)	to	pursue	in	their	final	two	years:	Aerospace	Engineering	Biomedical	Systems	Engineering	Electrical	&	Computer	Engineering	Energy	Systems	Engineering	Machine	Intelligence	Engineering
Mathematics,	Statistics	&	Finance	Engineering	Physics	Robotics	Engineering	The	curriculum	for	the	first	two	years	and	the	curricula	for	the	eight	majors	are	presented	below.		Degree	Designation	An	Engineering	Science	student	graduates	with	the	degree	“Bachelor	of	Applied	Science	in	Engineering	Science.”	On	their	official	transcript,	their	chosen
Major	is	indicated	on	their	official	transcript	(e.g.,	Major	in	Aerospace	Engineering).	Degree	Requirements	To	graduate,	students	must	meet	all	of	the	degree	requirements	outlined	in	the	section	on	Academic	Regulations	in	this	Calendar.	In	addition	to	these	requirements,	students	must	also	complete	their	chosen	Program	of	Study	in	Engineering
Science	as	described	on	the	following	pages	of	this	Calendar,	as	well	as	the	curriculum	requirements	of	the	Canadian	Engineering	Accreditation	Board	(CEAB).		To	complete	their	chosen	Program	of	Study,	students	are	responsible	for	ensuring	that	they	have	taken	all	of	the	required	courses	and	the	correct	number	of	technical	electives	for	their
Major.	Students	may	request	elective	course	substitutions,	but	any	such	substitutions	must	be	approved	in	advance	by	the	Division	of	Engineering	Science	through	the	student's	academic	advisor.	This	also	applies	to	any	course	listed	as	"Other	Technical	Elective."	Students	must	also	meet	the	Complementary	Studies	(CS)	requirements	of	the	program.
This	includes	2.0	credits,	of	which	1.0	credit	must	be	in	Humanities	and	Social	Sciences	(HSS).	More	information	on	CS	and	HSS	electives	may	be	found	in	the	Curriculum	&	Programs	section	of	this	Calendar.	Students	may	change	the	term	in	which	they	take	Technical	and	CS/HSS	Electives	(for	example,	switch	a	CS/HSS	elective	in	year	three
Fall	with	a	Technical	Elective	in	Year	four	Fall),	as	long	as	they	meet	the	elective	requirements	for	their	Major.	To	satisfy	CEAB	requirements,	students	must	accumulate	during	their	program	of	study	a	minimum	total	number	of	accreditation	units	(AU)	as	well	as	a	minimum	number	of	AU	in	six	categories:	complementary	studies,	mathematics,
natural	science,	engineering	science,	engineering	design	and	combined	engineering	science	and	design.	The	Division	of	Engineering	Science	provides	students	with	a	planning	tool	called	the	AU	Tracker	to	help	students	ensure	that	they	satisfy	these	requirements.	The	AU	Tracker,	which	lists	all	successfully	completed	courses	as	well	as	all	of	the
courses	they	are	enrolled	in	for	the	current	academic	year,	confirms	whether	students	are	on	track	to	meet	or	exceed	the	CEAB	requirements.	If	a	student	is	deficient	in	terms	of	the	Program	of	Study	or	falls	short	in	any	of	the	CEAB	categories,	the	student	must	adjust	their	course	selection	accordingly	to	graduate.	Practical	Experience	Requirement
Students	are	required	to	have	completed	a	total	of	600	hours	of	acceptable	practical	experience	before	graduation	(normally	during	their	summer	vacation	periods).	Satisfactory	completion	of	the	Professional	Experience	Year	(PEY)	Co-op	Program	will	also	completely	fulfil	the	Practical	Experience	Requirement	(PER).	Signal	processing	technique
Compressed	sensing	(also	known	as	compressive	sensing,	compressive	sampling,	or	sparse	sampling)	is	a	signal	processing	technique	for	efficiently	acquiring	and	reconstructing	a	signal,	by	finding	solutions	to	underdetermined	linear	systems.	This	is	based	on	the	principle	that,	through	optimization,	the	sparsity	of	a	signal	can	be	exploited	to	recover
it	from	far	fewer	samples	than	required	by	the	Nyquist–Shannon	sampling	theorem.	There	are	two	conditions	under	which	recovery	is	possible.[1]	The	first	one	is	sparsity,	which	requires	the	signal	to	be	sparse	in	some	domain.	The	second	one	is	incoherence,	which	is	applied	through	the	isometric	property,	which	is	sufficient	for	sparse	signals.[2][3]
Overview	A	common	goal	of	the	engineering	field	of	signal	processing	is	to	reconstruct	a	signal	from	a	series	of	sampling	measurements.	In	general,	this	task	is	impossible	because	there	is	no	way	to	reconstruct	a	signal	during	the	times	that	the	signal	is	not	measured.	Nevertheless,	with	prior	knowledge	or	assumptions	about	the	signal,	it	turns	out	to
be	possible	to	perfectly	reconstruct	a	signal	from	a	series	of	measurements	(acquiring	this	series	of	measurements	is	called	sampling).	Over	time,	engineers	have	improved	their	understanding	of	which	assumptions	are	practical	and	how	they	can	be	generalized.	An	early	breakthrough	in	signal	processing	was	the	Nyquist–Shannon	sampling	theorem.
It	states	that	if	a	real	signal's	highest	frequency	is	less	than	half	of	the	sampling	rate,	then	the	signal	can	be	reconstructed	perfectly	by	means	of	sinc	interpolation.	The	main	idea	is	that	with	prior	knowledge	about	constraints	on	the	signal's	frequencies,	fewer	samples	are	needed	to	reconstruct	the	signal.	Around	2004,	Emmanuel	Candès,	Justin
Romberg,	Terence	Tao,	and	David	Donoho	proved	that	given	knowledge	about	a	signal's	sparsity,	the	signal	may	be	reconstructed	with	even	fewer	samples	than	the	sampling	theorem	requires.[4][5]	This	idea	is	the	basis	of	compressed	sensing.	History	Compressed	sensing	relies	on	L	1	{\displaystyle	L^{1}}	techniques,	which	several	other	scientific
fields	have	used	historically.[6]	In	statistics,	the	least	squares	method	was	complemented	by	the	L	1	{\displaystyle	L^{1}}	-norm,	which	was	introduced	by	Laplace.	Following	the	introduction	of	linear	programming	and	Dantzig's	simplex	algorithm,	the	L	1	{\displaystyle	L^{1}}	-norm	was	used	in	computational	statistics.	In	statistical	theory,	the	L	1
{\displaystyle	L^{1}}	-norm	was	used	by	George	W.	Brown	and	later	writers	on	median-unbiased	estimators.	It	was	used	by	Peter	J.	Huber	and	others	working	on	robust	statistics.	The	L	1	{\displaystyle	L^{1}}	-norm	was	also	used	in	signal	processing,	for	example,	in	the	1970s,	when	seismologists	constructed	images	of	reflective	layers	within	the
earth	based	on	data	that	did	not	seem	to	satisfy	the	Nyquist–Shannon	criterion.[7]	It	was	used	in	matching	pursuit	in	1993,	the	LASSO	estimator	by	Robert	Tibshirani	in	1996[8]	and	basis	pursuit	in	1998.[9]	There	were	theoretical	results	describing	when	these	algorithms	recovered	sparse	solutions,	but	the	required	type	and	number	of	measurements
were	sub-optimal	and	subsequently	greatly	improved	by	compressed	sensing.[citation	needed]	At	first	glance,	compressed	sensing	might	seem	to	violate	the	sampling	theorem,	because	compressed	sensing	depends	on	the	sparsity	of	the	signal	in	question	and	not	its	highest	frequency.	This	is	a	misconception,	because	the	sampling	theorem	guarantees
perfect	reconstruction	given	sufficient,	not	necessary,	conditions.	A	sampling	method	fundamentally	different	from	classical	fixed-rate	sampling	cannot	"violate"	the	sampling	theorem.	Sparse	signals	with	high	frequency	components	can	be	highly	under-sampled	using	compressed	sensing	compared	to	classical	fixed-rate	sampling.[10]	Method
Underdetermined	linear	system	An	underdetermined	system	of	linear	equations	has	more	unknowns	than	equations	and	generally	has	an	infinite	number	of	solutions.	The	figure	below	shows	such	an	equation	system	y	=	D	x	{\displaystyle	\mathbf	{y}	=D\mathbf	{x}	}	where	we	want	to	find	a	solution	for	x	{\displaystyle	\mathbf	{x}	}	.	In	order	to
choose	a	solution	to	such	a	system,	one	must	impose	extra	constraints	or	conditions	(such	as	smoothness)	as	appropriate.	In	compressed	sensing,	one	adds	the	constraint	of	sparsity,	allowing	only	solutions	which	have	a	small	number	of	nonzero	coefficients.	Not	all	underdetermined	systems	of	linear	equations	have	a	sparse	solution.	However,	if	there
is	a	unique	sparse	solution	to	the	underdetermined	system,	then	the	compressed	sensing	framework	allows	the	recovery	of	that	solution.	Solution	/	reconstruction	method	Example	of	the	retrieval	of	an	unknown	signal	(gray	line)	from	few	measurements	(black	dots)	using	the	knowledge	that	the	signal	is	sparse	in	the	Hermite	polynomials	basis	(purple
dots	show	the	retrieved	coefficients).	Compressed	sensing	takes	advantage	of	the	redundancy	in	many	interesting	signals—they	are	not	pure	noise.	In	particular,	many	signals	are	sparse,	that	is,	they	contain	many	coefficients	close	to	or	equal	to	zero,	when	represented	in	some	domain.[11]	This	is	the	same	insight	used	in	many	forms	of	lossy
compression.	Compressed	sensing	typically	starts	with	taking	a	weighted	linear	combination	of	samples	also	called	compressive	measurements	in	a	basis	different	from	the	basis	in	which	the	signal	is	known	to	be	sparse.	The	results	found	by	Emmanuel	Candès,	Justin	Romberg,	Terence	Tao,	and	David	Donoho	showed	that	the	number	of	these
compressive	measurements	can	be	small	and	still	contain	nearly	all	the	useful	information.	Therefore,	the	task	of	converting	the	image	back	into	the	intended	domain	involves	solving	an	underdetermined	matrix	equation	since	the	number	of	compressive	measurements	taken	is	smaller	than	the	number	of	pixels	in	the	full	image.	However,	adding	the
constraint	that	the	initial	signal	is	sparse	enables	one	to	solve	this	underdetermined	system	of	linear	equations.	The	least-squares	solution	to	such	problems	is	to	minimize	the	L	2	{\displaystyle	L^{2}}	norm—that	is,	minimize	the	amount	of	energy	in	the	system.	This	is	usually	simple	mathematically	(involving	only	a	matrix	multiplication	by	the
pseudo-inverse	of	the	basis	sampled	in).	However,	this	leads	to	poor	results	for	many	practical	applications,	for	which	the	unknown	coefficients	have	nonzero	energy.	To	enforce	the	sparsity	constraint	when	solving	for	the	underdetermined	system	of	linear	equations,	one	can	minimize	the	number	of	nonzero	components	of	the	solution.	The	function
counting	the	number	of	non-zero	components	of	a	vector	was	called	the	L	0	{\displaystyle	L^{0}}	"norm"	by	David	Donoho.[note	1]	Candès	et	al.	proved	that	for	many	problems	it	is	probable	that	the	L	1	{\displaystyle	L^{1}}	norm	is	equivalent	to	the	L	0	{\displaystyle	L^{0}}	norm,	in	a	technical	sense:	This	equivalence	result	allows	one	to	solve
the	L	1	{\displaystyle	L^{1}}	problem,	which	is	easier	than	the	L	0	{\displaystyle	L^{0}}	problem.	Finding	the	candidate	with	the	smallest	L	1	{\displaystyle	L^{1}}	norm	can	be	expressed	relatively	easily	as	a	linear	program,	for	which	efficient	solution	methods	already	exist.[13]	When	measurements	may	contain	a	finite	amount	of	noise,	basis
pursuit	denoising	is	preferred	over	linear	programming,	since	it	preserves	sparsity	in	the	face	of	noise	and	can	be	solved	faster	than	an	exact	linear	program.	Total	variation-based	CS	reconstruction	See	also:	Total	variation	denoising	Motivation	and	applications	Role	of	TV	regularization	Total	variation	can	be	seen	as	a	non-negative	real-valued
functional	defined	on	the	space	of	real-valued	functions	(for	the	case	of	functions	of	one	variable)	or	on	the	space	of	integrable	functions	(for	the	case	of	functions	of	several	variables).	For	signals,	especially,	total	variation	refers	to	the	integral	of	the	absolute	gradient	of	the	signal.	In	signal	and	image	reconstruction,	it	is	applied	as	total	variation
regularization	where	the	underlying	principle	is	that	signals	with	excessive	details	have	high	total	variation	and	that	removing	these	details,	while	retaining	important	information	such	as	edges,	would	reduce	the	total	variation	of	the	signal	and	make	the	signal	subject	closer	to	the	original	signal	in	the	problem.	For	the	purpose	of	signal	and	image
reconstruction,	ℓ	1	{\displaystyle	\ell	_{1}}	minimization	models	are	used.	Other	approaches	also	include	the	least-squares	as	has	been	discussed	before	in	this	article.	These	methods	are	extremely	slow	and	return	a	not-so-perfect	reconstruction	of	the	signal.	The	current	CS	Regularization	models	attempt	to	address	this	problem	by	incorporating
sparsity	priors	of	the	original	image,	one	of	which	is	the	total	variation	(TV).	Conventional	TV	approaches	are	designed	to	give	piece-wise	constant	solutions.	Some	of	these	include	(as	discussed	ahead)	–	constrained	ℓ	1	{\textstyle	\ell	_{1}}	-minimization	which	uses	an	iterative	scheme.	This	method,	though	fast,	subsequently	leads	to	over-smoothing
of	edges	resulting	in	blurred	image	edges.[14]	TV	methods	with	iterative	re-weighting	have	been	implemented	to	reduce	the	influence	of	large	gradient	value	magnitudes	in	the	images.	This	has	been	used	in	computed	tomography	(CT)	reconstruction	as	a	method	known	as	edge-preserving	total	variation.	However,	as	gradient	magnitudes	are	used	for
estimation	of	relative	penalty	weights	between	the	data	fidelity	and	regularization	terms,	this	method	is	not	robust	to	noise	and	artifacts	and	accurate	enough	for	CS	image/signal	reconstruction	and,	therefore,	fails	to	preserve	smaller	structures.	Recent	progress	on	this	problem	involves	using	an	iteratively	directional	TV	refinement	for	CS
reconstruction.[15]	This	method	would	have	2	stages:	the	first	stage	would	estimate	and	refine	the	initial	orientation	field	–	which	is	defined	as	a	noisy	point-wise	initial	estimate,	through	edge-detection,	of	the	given	image.	In	the	second	stage,	the	CS	reconstruction	model	is	presented	by	utilizing	directional	TV	regularizer.	More	details	about	these
TV-based	approaches	–	iteratively	reweighted	l1	minimization,	edge-preserving	TV	and	iterative	model	using	directional	orientation	field	and	TV-	are	provided	below.	Existing	approaches	Iteratively	reweighted	ℓ	1	{\displaystyle	\ell	_{1}}	minimization	Iteratively	reweighted	ℓ	1	{\textstyle	\ell	_{1}}	minimization	method	for	CS	In	the	CS	reconstruction
models	using	constrained	ℓ	1	{\displaystyle	\ell	_{1}}	minimization,[16]	larger	coefficients	are	penalized	heavily	in	the	ℓ	1	{\displaystyle	\ell	_{1}}	norm.	It	was	proposed	to	have	a	weighted	formulation	of	ℓ	1	{\displaystyle	\ell	_{1}}	minimization	designed	to	more	democratically	penalize	nonzero	coefficients.	An	iterative	algorithm	is	used	for
constructing	the	appropriate	weights.[17]	Each	iteration	requires	solving	one	ℓ	1	{\displaystyle	\ell	_{1}}	minimization	problem	by	finding	the	local	minimum	of	a	concave	penalty	function	that	more	closely	resembles	the	ℓ	0	{\displaystyle	\ell	_{0}}	norm.	An	additional	parameter,	usually	to	avoid	any	sharp	transitions	in	the	penalty	function	curve,	is
introduced	into	the	iterative	equation	to	ensure	stability	and	so	that	a	zero	estimate	in	one	iteration	does	not	necessarily	lead	to	a	zero	estimate	in	the	next	iteration.	The	method	essentially	involves	using	the	current	solution	for	computing	the	weights	to	be	used	in	the	next	iteration.	Advantages	and	disadvantages	Early	iterations	may	find	inaccurate
sample	estimates,	however	this	method	will	down-sample	these	at	a	later	stage	to	give	more	weight	to	the	smaller	non-zero	signal	estimates.	One	of	the	disadvantages	is	the	need	for	defining	a	valid	starting	point	as	a	global	minimum	might	not	be	obtained	every	time	due	to	the	concavity	of	the	function.	Another	disadvantage	is	that	this	method	tends
to	uniformly	penalize	the	image	gradient	irrespective	of	the	underlying	image	structures.	This	causes	over-smoothing	of	edges,	especially	those	of	low	contrast	regions,	subsequently	leading	to	loss	of	low	contrast	information.	The	advantages	of	this	method	include:	reduction	of	the	sampling	rate	for	sparse	signals;	reconstruction	of	the	image	while
being	robust	to	the	removal	of	noise	and	other	artifacts;	and	use	of	very	few	iterations.	This	can	also	help	in	recovering	images	with	sparse	gradients.	In	the	figure	shown	below,	P1	refers	to	the	first-step	of	the	iterative	reconstruction	process,	of	the	projection	matrix	P	of	the	fan-beam	geometry,	which	is	constrained	by	the	data	fidelity	term.	This	may
contain	noise	and	artifacts	as	no	regularization	is	performed.	The	minimization	of	P1	is	solved	through	the	conjugate	gradient	least	squares	method.	P2	refers	to	the	second	step	of	the	iterative	reconstruction	process	wherein	it	utilizes	the	edge-preserving	total	variation	regularization	term	to	remove	noise	and	artifacts,	and	thus	improve	the	quality	of
the	reconstructed	image/signal.	The	minimization	of	P2	is	done	through	a	simple	gradient	descent	method.	Convergence	is	determined	by	testing,	after	each	iteration,	for	image	positivity,	by	checking	if	f	k	−	1	=	0	{\displaystyle	f^{k-1}=0}	for	the	case	when	f	k	−	1	<	0	{\displaystyle	f^{k-1}
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